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0XOWLVFDOH�1XPHULFDO�0HWKRGV
DUH�1HHGHG

■ Some important chemical species may be
present in very small quantities.  Key chemical
reactions involving these species should be
modeled at a stochastic or intermediate level

■ It is much too expensive to treat all of the
reactions at this level



&RPSXWDWLRQDO�PRGHOV�RI�FKHPLFDO
UHDFWLRQ�V\VWHPV
■ Discrete and stochastic - Finest scale of
representation for well stirred molecules. Exact
description via Stochastic Simulation Algorithm (SSA)
due to Gillespie.
■ Continuous and stochastic - The Langevin regime.
Valid under certain conditions. Described by Stochastic
Differential Equations (SDE).
■ Continuous and deterministic - The rate equations.
Described by ordinary differential equations (ODE).
Valid under further assumptions.



6WRFKDVWLF�6LPXODWLRQ�$OJRULWKP

■ Well-stirred mixture
■ N molecular species
■ Constant temperature, fixed volume
■ M reaction channels
■ Dynamical state
where             is the number of          molecules in the system
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6WRFKDVWLF�6LPXODWLRQ�$OJRULWKP
■ Propensity function              the probability,

given             , that one          reaction will occur
somewhere inside       in the next infinitesimal
time interval

■ When that reaction occurs, it changes the state.
The amount by which        changes is given by

                 the change in the number of
molecules produced by one          reaction

■ X(t) is a jump Markov process
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6WRFKDVWLF�6LPXODWLRQ�$OJRULWKP
First reaction method:
■ Generate a tentative reaction time for each

reaction channel       according to

    where                    are M statistically independent
samplings of U(0,1)

■ Take

■ Update
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&KHPLFDO�/DQJHYLQ�(TXDWLRQ
    If the system possesses a macroscopically infinitesimal

time scale, in the sense that during any dt on that scale
all of the reaction channels fire many more times than
once yet none of the propensity functions change
appreciably, we can approximate the jump Markov
process by a continuous Markov process defined by
the Chemical Langevin Equation

    where                 are M temporally uncorrelated,
statistically independent normal variables with mean 0
and variance 1
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5HDFWLRQ�5DWH�(TXDWLRQ
   In the limit of infinitely large molecular populations

of all reactant species, the second term becomes
vanishingly small in comparison to the first,
yielding the deterministic reaction rate equation
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7DX�OHDSLQJ�PHWKRG
■ Given a subinterval of length      , if we could determine

how many times each reaction channel fired in each
subinterval, we could forego knowing the precise
instants at which the firings took place.  Thus we could
leap from one subinterval to the next.

■ How long can that subinterval be?  Tau-leaping is exact
for constant propensity functions, thus

    is selected so that no propensity function changes
`appreciably’

τ

τ



7DX�OHDSLQJ���$�PXOWL�VFDOH�PHWKRG�RI
QXPHULFDO�VLPXODWLRQ

■ Developed by Gillespie
■ Based on a local Poisson

assumption
■ Agrees with SSA in the

small step size limit
■ Equivalent to Forward

Euler in the SDE and ODE
regimes

■ The explicit nature of the
scheme makes it inefficient
for stiff problems.

Update formula
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2XU�JRDOV�IRU�WDX�OHDSLQJ
■ Stiffness – how does it present itself and what can

we do about it?
■ Stepsize control – current algorithms don’t work

well, particularly for stiff systems

■ Higher order methods
■ Firmer theoretical basis

■ Incorporation with Stochastic Simulation
Algorithm, Chemical Langevin Equation and
Reaction Rate Equation for a fully multiscale
simulation of chemical kinetics



6WLII�V\VWHPV
■ Exhibit slow and fast time scales.

■ Fast reactions almost cancel each other
while slow reactions determine the trend.

■ Explicit methods such as Tau leaping
require unreasonably small time steps in
order to maintain stability.

■ Implicit methods in general do not have step
size limitations due to stability. Accuracy
concerns alone determine the step size.

■ Need an implicit version of tau leaping for
stiff systems.



DimerDecay Reactions
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  Decaying-Dimerizing Reaction Set
              S1--> 0              c1 = 1
     S1 + S1 --> S2            c2 = 0.002
             S2 --> S1 + S1    c3 = 0.5
             S2 --> S3            c4 = 0.04
     - Exact SSA run
     - 2000 steps (reactions) per dot
     - 527,928 steps (reaction events) total
     - X(3) ends at 17125
     - T ends at 43.86

◆ Plot of reaction propensities against time using SSA.
◆ The fast red and blue reactions almost cancel each other.

6WLII�H[DPSOH���'HFD\LQJ�GLPHUL]LQJ
UHDFWLRQ�VHW
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  Decaying-Dimerizing Reaction Set
              S1--> 0              c1 = 1
     S1 + S1 --> S2            c2 = 0.002
             S2 --> S1 + S1    c3 = 0.5
             S2 --> S3            c4 = 0.04
     - Exact SSA run
     - 2000 steps (reactions) per dot
     - 527,928 steps (reaction events) total
     - X(3) ends at 17125
     - T ends at 43.86

Plot of number of species S1 against time using SSA.

6WLII�H[DPSOH���'HFD\LQJ�GLPHUL]LQJ
UHDFWLRQ�VHW
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  Decaying-Dimerizing Reaction Set
              S1--> 0              c1 = 1
     S1 + S1 --> S2            c2 = 0.002
             S2 --> S1 + S1    c3 = 0.5
             S2 --> S3            c4 = 0.04
     - Exact SSA run
     - 2000 steps (reactions) per dot
     - 527,928 steps (reaction events) total
     - X(3) ends at 17125
     - T ends at 43.86

6WLII�H[DPSOH���'HFD\LQJ�GLPHUL]LQJ
UHDFWLRQ�VHW

Plot of number of species S2 and S3 against time using SSA.



([SOLFLW�WDX�DSSOLHG�WR�VWLII�SUREOHP
■ More noise than

predicted by SSA
■ Instability of explicit

method amplifies the
noise

■ Step size selection was
based on rate of change
of propensities (original
Gillespie criterion)

■ Step sizes are uneven
due to sensitive
dependence of
propensities on states

Decaying-Dimerizing
Example

Sample trajectory



,PSOLFLW�7DX

■ Based on the (explicit) tau method
■ Only the mean part is implicit
■ Reduces to the Backward Euler scheme in the SDE

and ODE regimes
■ Agrees with SSA in the small step size limit
■ Better suited for stiff problems.

    )()),(()( xaxaPXxaX τντντν −+∆+=∆

The update formula



,PSOLFLW�WDX�DSSOLHG�WR�VWLII�SUREOHP

Decaying-Dimerizing
Example

■ No extra noise due to
instability as in the
explicit method

■ Step size selection was
based on rate of change
of propensities (original
Gillespie criterion)

■ Step sizes are still
uneven due to sensitive
dependence of
propensities on states

Sample trajectory



$GDSWLYH�VWHS�VL]H�VHOHFWLRQ
Two approaches for the implicit tau

Propensity based
■ Original criterion used

by Gillespie requires
small relative change
in the propensities.

■ Modified criterion adds
a “filter” to the above
which allows for larger
steps for stiff
problems and is
appropriate for implicit
schemes.

Estimated mean state based
■ Exploits the fact that the true

mean trajectory of an SDE
satisfies an ODE.

■ By simulating an ensemble
of trajectories together tracks
an approximate solution of
this ODE.

■ Uses standard ODE local
error criterion for backward
Euler to determine step size.



6WHS�VL]H�VHOHFWLRQ�EDVHG�RQ�ILOWHUHG�UDWH�RI
FKDQJH�RI�SURSHQVLWLHV

■ About 130 steps -
Much less than SSA

■ SSA takes about
1300 reaction steps

■ Implicit tau

Sample trajectory

Decaying-Dimerizing  Example



6WHS�VL]H�VHOHFWLRQ�EDVHG�RQ�ORFDO�HUURU�RI
HVWLPDWHG�PHDQ�WUDMHFWRU\

■ Only 20 steps -
Fewer than
propensity based
method

■ Implicit tau
■ Ensemble of size

100 was used to
estimate the
mean trajectory

Sample trajectory

Decaying-Dimerizing  Example



+LJKHU�RUGHU�PXOWL�VFDOH�PHWKRGV

Heuristic approach
■  Take valid higher order numerical schemes for SDEs

and/or  ODEs and modify in order to fit the Poisson
regime

■ Some success with Trapezoidal implicit scheme

Rigorous approach  (Work in progress..)
Starting from a rigorous fine scale representation such as

SSA develop equivalent of Taylor expansions.

Two approaches
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(VWLPDWLRQ�RI�ILQDO�VWDWH
SUREDELOLW\�GHQVLW\�IXQFWLRQV

Considered reaction
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Methods compared
against SSA

■ Explicit tau
■ Implicit tau
■ Estimated midpoint (a

method developed earlier
by Gillespie)

■ Trapezoidal implicit



(VWLPDWHG�ILQDO�VWDWH�SUREDELOLW\
GHQVLW\�IXQFWLRQV

Color scheme
■ Blue - SSA
■ Magenta - Exp Tau
■ Yellow - Imp Tau
■ Red - Trap Imp
■ Cyan - Est Midpoint

Sample size
■ 100,000 runs of SSA.
■ 10,000 runs of all other

methods.

Constant step size of 0.01
was used.



(UURU�LQ�HVWLPDWHG�ILQDO
VWDWH�PHDQ

Color scheme
■ Magenta - Exp Tau
■ Yellow - Imp Tau
■ Red - Trap Imp
■ Cyan - Est Midpoint
■ Black - Accuracy of

estimator - Ignore
points below this!

Sample size
■ 100,000 runs of SSA.
■ 10,000 runs of all other

methods.

Error in estimated mean versus step size

Constant step sizes of 0.01,
0.005,0.0025, 0.00125,
and 0.000625 were used


